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Chapter 1 Graphs of Scalar Functions
2019年1月13日 17:46
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A function is a RULE that assigns an element of some sets  a unique element in some sets  .

A set is a collection of elements.

Recall that a function      associates with each element    a unique element       called the image of  
under  . The set  is called the domain of  and is denoted by     . The set  is called the codomain of  .

Ex:       
Domain:  
Codomain:  
Range:  

       

Domain:  
Codomain:  
Range:       

A singular variable scalar valued function is a rule that assigns to an element of    a unique element in     

A bi-variate scalar valued function is a rule that assigns to an element of   . A unique element in    .

           

                   

Definition: Scalar Function

A scalar function           of  -variables in a function whose domain is a subset of   and whose range is a 

subset of  .

          

Domain   

Range  

             

           

Quadratic Function
Linear Function

        

Domain   

Range       singleton

            

Quadratic Function
Paraboloid
       

Domain   

Range       

     
 

  

1.1 Scalar Functions
2019年1月13日 20:47
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Domain:                       

Range :              

            

Hyperboloid
Domain   

Range  

                 
             

Domain:            
       

                     

Range:      
   
 

Hemisphere
Part of an ellipsoid

Exercise:

          

                 

Exersice 1

           

       

Domain:

Max Value of        is 1
Min is 0

Thus, range       

Range:

                  1.

          
        

Domain:

                
            

2.

Sketch the domain and find the range of the following functions:
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Domain:

Range:
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We define the graph of a function       as the set of all points             in   such that 

          . We think of       as representing the height of the graph         above the 

  -plane at the point            

Definition: Level Curves

        

The level curves of a function       are the curves

Where  is a constant in the range of  .

The family of level curves is often called a contour map or a topographic map.

The single point      is called an exceptional level curve.

Paraboloid

1.2 Geometric Interpretation of         
2019年1月14日 10:00
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Saddle surface

Parabolic cylinder

Some other examples include use in weather maps to show curves of constant temperature 
called isotherms, in marine charts to indicate water depths, and in barometric pressure charts 
to show curves of constant pressure called isobars.

Definition: Cross Sections
A cross section of a surface         is the intersection of         with a plane.

For the purpose of sketching the graph of a surface         , it is useful to consider the cross 

sections formed by intersecting         with the vertical planes    and    .

Generalization:
Definition: Level Surfaces

                  

A level surface of a scalar function         is defined by

Definition: Level Sets

          

A level set a scalar function          is defined by

   分区MATH 237 的第 7 页    



              

   分区MATH 237 的第 8 页    



Chapter 2 Limits
2019年1月14日 22:58
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Definition: Neighborhood

                                      

A  -neighbourhood of a point         is a set 

Remark

                             
 

                 
 

Recall that                is the Euclidean distance in   . That is, 

Definition: Limit

                                           

Assume       is defined in a neighborhood of      , except possibly at      . If for every    

there exists a    such that 

   
           

        

Then 

2.1 Definition of a Limit
2019年1月14日 22:58
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Theorem 1 

   
           

                   
           

          
           

      1.

   
           

                   
           

           
           

       2.

   
           

      

      
       

   
           

      

   
           

      
                           

           
        3.

      
           

             
           

                      

Proof:

                                           
 

 
                    

 

 
   

We will prove (a) and leave (b) and (c) as exercises. Let     Since                        

and                        both exist, by definition of a limit, there exists a    such that 

                                                  

                         

  
 

 
   

 

 
    

Thus, if                    , then 

Theorem 2

     
           

                                       

Proof:

            
           

          
           

            
           

                  

Assume that                        and                        . Then, 

Hence,      and so the limit is unique.

2.2 Limit Theorems
2019年1月15日 10:17
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Exercise 1

   
           

         

Let        
     

                           . Show that 

For all    , but                     does not exist.

Hint:     does not describe all lines through the origin.

Solution:

   
           

            
           

   

        
          

     
           

 

       
         

   

Approaching the limit along lines     we get 

However, if we approach the limit through    .

   
           

           
           

 

    
      

   

We get

Example 3

           
   

     
                                    

           
                      

Solution:

   
           

           
   

      

        
              

   
 

  

     
          

As before we first test the limit along lines     . We get

   
           

          
   

 

  
       

   
   

And

   
           

           
   

        

        
             

   

 

 
   

 

 
  

These all give the same value, so we start testing curves. Of course, we don't want to start randomly 
guessing curves. To get a limit other than 0, we need the power of  everywhere in the denominator 
to match the power of  in the numerator (so that they cancel out). This prompts us to try the limit 
along     . We get

Since we have two different values along two different paths, the limit does not exist.

We could have done the last example more efficiently by just testing      to begin with 
and showing the limit depends on  .

1.

Make sure that all lines or curves you use actually approach the limit. A common error is to 
approach a limit like in Example 3 along a line    ... Which of course is meaningless as it 
does not pass through      .

2.

Example 3 shows that no matter how many lines and / or curves you test, you cannot use this 
method to prove a limit exists. Just because you haven't found two paths that give different 
values does not mean there isn't one!

3.

Remark

2.3 Proving a Limit Does Not Exist
2019年1月15日 11:45
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Theorem 1 (Squeeze Theorem)

                                      

If there exists a function       such that 

   
           

        

In some neighborhood of      and                       , then 

Proof:

                                        

Let    . Since                       we have that there exists a    such that

                            

Hence, if                    , then we have

   
           

        

As our hypothesis requires that         for all            in the neighborhood of      . 

Therefore, by definition of a limit, we have

Exercise 1
Our statement of the Squeeze Theorem above is not a direct generalization of the Squeeze Theorem 
we used in single variable calculus. What would the direct generalization of the Squeeze Theorem 
be? Show how your generalization and the theorem above are related.

Remark

    
Be careful when working with inequalities! For example, the statement 

Is false if      . The appendix at the end of this chapter gives a brief review of inequalities.

Exercise 2.

       

     
                                       

Prove that 

Does equality ever hold?

Solution:

             

                     

                   

           

                             

                  

       

     
         

                  

     
                           

Thus,

2.4 Proving a Limit Exists
2019年1月15日 19:35
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Example 3

Determine whether               
          

       
        exists, and if so find its value.

Solution:

   
   

             

        
                   

   

         

   
               

Trying lines     we get

 
          

       
                     

          

       
             

       

       
         

  
  

       
        

  
       

       
        

  
            

       
                

Since the value along each line is     , we try to prove the limit is   with the Squeeze 
Theorem. Thus, we consider 

Since              

Since                    we get               
          

       
           by the Squeeze Theorem.

Exercise 3

       
          

     
                              

Consider  defined by 

Determine whether                     exists, and if so find its value.

Solution:

   
   

               

        
                      

   

            

        
                    

   

         

        
              

    

    
       

Tying lines     we get 

Clearly, the limit does not exist.

Remark

                
 

          
 

                         
 

The concept of a neighbourhood, the definition of a limit, the Squeeze Theorem and the limit 
theorems are all valid for scalar functions          . In fact, to generalize these concepts, one 
only needs to recall that if            and            are in   , then the Euclidean 

distance from  to  is 
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Trichotomy Property: For any real numbers  and  , one and only one of the following holds:

Transitivity Property: If    and    , then    .
Addition Property: If    , then for all  ,        .
Multiplication Property: If    and    , then      .

Using these properties one can deduce other results.

     
           

            

The absolute value of a real number  is defined by

       
    

1.
     if and only if        2.
The Triangle Inequality:              for all      .3.

Three frequently used results, which follow from the axioms, are listed below.

Remark.

The Triangle Inequality1.
If    , then      2.
The cosine inequality              3.

When using the Squeeze Theorem, the most commonly used inequalities are:

2.5 Appendix: Inequalities
2019年1月17日 13:06
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Chapter 3 Continuous Functions
2019年1月17日 13:21
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In many situations, we shall require that a function       is continuous. Intuitively, this means that 

the graph of  (the surface         ) has no "breaks" or "holes" in it. As with functions of one 

variable, continuity is defined by using limits.

Exercise 1
Review the definition of a continuous function of one variable in your first year calculus text. Give an 
example (formula and graph) of a function       which is defined for all    , but is not 
continuous at    .

Definition: Continuous

   
           

             

A function       is continuous at      if and only if 

Additionally, if  is continuous at every point in a set     , then we say that  is continuous 
on  .

Remark

   
           

              1.

 is defined at      ,2.
The stated equality.3.

There are really three requirements in this definition:

Exercise 2

Let  be defined by         
 

  

       
                       

                    

Determine whether  is continuous at      .

Solution:

 
  

       
           

          

       
               

Since            , we get               
    

       
       

Thus,  is continuous at      .

3.1 Definition of a Continuous Function
2019年1月17日 13:21
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Definition: Operations on Functions

                        

The sum    is defined by 1.

                      

The product   is defined by 2.

 
 

 
         

      

      
                   

The quotient 
 

 
 is defined by 3.

If       and       are scalar functions and                , then:

Definition: Composite Function

                    

For scalar functions     and       the composite function    is defined by 

For all           for which            .

We shall refer to the following theorems collectively as the Continuity Theorems.

Theorem 1
If  and  are both continuous at      , then    and   are continuous at      .

Proof:

   
           

             

   
           

             

We prove the result for    and leave the proof for   as an exercise. By the hypothesis and 
the definition of continuous function we have that 

   
           

               
           

          
           

      

               

            

Hence, by definition of the sum and limit properties, we get 

Exercise 1
Complete the proof of the theorem by proving that   is continuous at      .

Theorem 2

If  and  are both continuous at      and         , then the quotient 
 

 
 is continous at      .

Exercise 2
Use the Limit Theorems to prove Theorem 2. Where is the hypothesis         used explicitly?

Theorem 3
If       is continuous at      and     is continuous at       , then the composition    is 
continuous at      .

Proof:

   
      

          

Let    . By definition of continuity we have that 

3.2 The Continuity Theorems
2019年1月18日 1:45
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So, by definition of a limit there exists a     such that 

   
           

             
Similarly, we have 

                                                

Hence, given the above   , there exists a    such that 

                                                                             

  

Notice that the conclusion of (3.2) is the hypothesis of (3.1) where         . Hence, combining 
(3.1) and (3.2), we get

   
           

                     
Consequently, by definition of a limit,

The constant function         •

The power functions                    •

The logarithm function      •

The exponential function     •
The trigonometric functions,              , etc.•
The inverse trigonometric functions,          , etc.•
The absolute value function    •

Before we can apply these theorems, we need a list of basic functions which are known to be 
continuous on their domains:

Exercise 3

Prove that the constant function         and the coordinate functions         ,         

are continuous on their domains.

Exercise 4

Prove that            
 

is continous for all      which satisfy     . Which of the 

theorems and basic functions do you have to use?

Solution:
Basic functions:      

Theorems: Multiply

Exercise 5
Which of the basic functions and theorems do you have to use in order to prove that        
          

             is continuous for all            

Example 2

        

     

     
                         

                   

Discuss the continuity of the function  defined by

Solution:
For            the Continuity Theorems immediately imply that  is continuous at these 
points.

Observe the point      is singled out in the definition of the function. Thus, the Continuity 
Theorems cannot be appled at      and so we have to use the definition. That is, we have to 
determine whether

   分区MATH 237 的第 19 页    
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determine whether

   
           

          
   

    
   

   
             

   

     

  
          

   

   

 
    

 

 
  

On the line    we get

By L'Hospital's Rule. It follows that                     does not equal       , and hence by 

definition,  is not continuous at      .

Exercise 6

Would the function  in Example 2 be continuous at      if we defined        
 

 
 ?

Example 3

        

     

   
                

           

Discuss the continuity of the function  defined by 

Solution:
For points      with    the Continuity Theorems immediately imply that  is continuous at 

these points.

We can not apply the continuity theorems at the points      with    . Consider any one of 

these points and denote it by      .

   
           

      

If      approaches      with      , then          , and       approaches (and in 

fact equals) 1. On the other hand, if      approaches      with      , then       

approaches -1. Thus,

Does not exist. So, by definition of continuity,  is not continuous at      .
The geometric interpretation is simple. The graph of  consists of two parallel half-planes which 
form a "step" along the line    .
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So far in this chapter, we have shown how to prove that a function is continuous at a point 
essentially "by inspection" by using the Continuity Theorems. This makes it easy to evaluate 
                    if  is continuous at      . In particular, if  is continuous at      , then 

                    can be evaluated simply by evaluating       .

Remark
In applying the Squeeze Theorem one has to prove that                        One hopes to 

be able to evaluate this limit by inspection, and so one tries to set up the inequality in the 
Squeeze Theorem so that       is continuous at      .

3.3 Limits Revisited
2019年1月19日 13:21
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Chapter 4 The Linear Approximation
2019年1月19日 13:27
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Treat  as a constant and differentiate with respect to  to obtain 
  

  
   1.

Treat  as a constant and differentiate with respect to  to obtain 
  

  
  .2.

A scalar function       can be differentiated in two natural ways:

The derivatives 
  

  
  and 

  

  
  are called the (first) partial derivatives of  .

Here is the formal definition.

Definition: Partial Derivatives

  

  
          

   

               

 
                  

  

  
          

   

               

 
                  

The partial derivatives of       are defined by 

Provided that these limits exist.

    
  

  
            

  

  
      

It is sometimes convenient to use operator notation    and    for the partial derivatives of 

      . The nontation    means: differentiate  with respect to the variable in the first position, 

holding the other fixed. If the independent variables are  and  , then 

Example 1

Consider the function  defined by             where  is a constant. Determine 
  

  
  and 

  

  
  .

Solution:

  

  
                             

  

  
                     

By using the Product Rule and Chain Rule for differentiation,

Exercise 1
A function  is defined by                . Determine   and   .

  

  
               

  

  
                

Solution:

Example 2

A function  is defined by               
 

 
 
. Determine whether 

  

  
       exists.

Solution:

  

  
         

  

       
 
   

          

By single-variable differentiation rules,

  

  
        

   

           

 

     
   

     
 
   

 
     

   
   

For all      such that        . One cannot substitute            in equation (4.1) since the 

denominator would be zero. Thus, we must use the definition of the partial derivatives at      . We 
get

4.1 Partial Derivatives
2019年1月19日 13:27
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Example 3

Let         

  

                            

                   
. Calculate        and         

           
   

               

 
                     

   

    
              

 
            

           
   

               

 
                     

   

    
              

 
            

Solution: Since  changes definition at      , we must use the definition of the partial derivaties. 
We get 

Remark

In Example 2, we showed that         

  

                            

                   
is not continuous at      , but 

we have just shown that its partial derivatives exist! This demonstrates that the concept of 
partial derivatives do not match our concept of differentiability  for functions of one variable 
from Calculus 1. We will look at this more in the next chapter.

Exercise 2

Refer to the function in Example 2. Show that 
  

  
        does not exist for    .

Exercise 3

A function  is defined by                . Determine whether 
  

  
       and 

  

  
       exist.

Generalization

We can extend what we have done for scalar functions of two variables to scalar functions of  
variables          . To take the partial derivative of  with respect to its  -th variable, we 
hold all the other variables constant and differentiate with respect to the  -th variable.

Example 4
Let               . Find   ,   , and   .

Solution:

              

               

                

We have 

Exercise 4

For         , write the precise definition of 
  

  
  , 

  

  
  , 

  

  
  .
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Second Partial Derivatives

Observe that the partial derivatives of a scalar function of two variables are both scalar functions of 
two variables. Therefore, we can take the partial derivatives of the partial derivatives of any scalar 
function.

   

   
    

 

  
    

  

  
                         

  

  
                                    

   

    
      

 

  
    

  

  
                         

  

  
                                   

In how many ways can one calculate a second partial derivative of       ? Since both of the partial 
derivatives of  have two partial derivatives, there are four possible second partial derivatives of  . 
They are:

   

    
      

 

  
    

  

  
     

   

   
    

 

  
    

  

  
    

Similarly

   

   
          

   
   

    
               

   

    
                

   

   
          

  

It is often convenient to use the subscript notation or the operator notation:

The subscript notation suggests that one could write the second partial derivatives in a    
matrix.

Definition: Hessian Matrix

         
                

                
 

The Hessian matrix of       , denoted by        , is defined as 

Example 1
Let  be a constant. Find all the second partial derivatives of             .

Solution:

  

  
                     

  

  
                

We first calculate the first partial derivatives. We have 

   

   
         

 

  
                                   

   

    
           

 

  
                                   

   

    
           

 

  
                              

   

   
         

 

  
                     

Thus, we get

4.2 Higher-Order Partial Derivatives
2019年1月19日 18:32
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In the previous example, observe that

This is a fact a general property of partial derivatives, subject to a continuity requirement, as 
follows.

Theorem 1
(Clairaut's Theorem)

                 

If    and    are defined in some neighbourhood of      and are both continuous      , then 

Exercise 1

                          
Verify that                 satisfies 

Exercise 2

                 

Verify that          satisfies

Higher-Order Partial Derivatives

    

If the  -th partial derivatives of           are continuous, then we write

And say " is in class   ."

So,          means that  has continuous second partial derivatives, and therefore, by 

Clairaut's Theorem, we have that         

   分区MATH 237 的第 26 页    



Definition: Tangent Plane

         
  

  
              

  

  
             

The tangent plane to         at the point             is

Exercise 1

               
         

The graph of the function 

Is the cone                 
. Find the equation of the tangent plane at the point         

Exercise 2
Show that the tangent plane at any point on the cone in Exercise 1 passes through the origin.

Remark
In Exercise 2, you should note that a tangent plane does not exist at the vertex        of the cone, 
since the cone is not "smooth" there. We shall discuss the question of the existence of a tangent 
plane in Chapter 5.

4.3 The Tangent Plane
2019年1月19日 20:32
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Review of 1-D case

                 

For a function     the tangent line can be used to approxiamte the graph of the function near the 

point of tangency. Recall that the equation of the tangent line to       at the point         is 

                     
The function   defined by 

Is called the linearization of  at  since      approximates     for  sufficiently close to  .

          
For  sufficiently close to  , the approximation

Is called the linear approximation of  at  .

Exercise 1

      , for  sufficiently close to  .1.

    
      

   
 

 
                                 2.

         , for  sufficiently close to 1.3.

Verify each approximation:

The 2-D case
For a function       , the tangent plane can be used to approximate the surface         

near the point of tangency.

Definition: Linearization Linear Approximation
For a function       we define the linearization            of  at      by

                   
  

  
              

  

  
             

                  

We call the approximation 

The linear approximation of       at      .

Increment Form of the Linear Approximation

              

Suppose that we know       and want to calculate       at a nearby point. Let 

                
And 

              
  

  
              

  

  
             

The linear approximation is

   
  

  
           

  

  
          

This can be rearranged to yield

This gives an approximation for the change   in       due to a change        away from 

the point      .

We shall refer to equation (4.4) as the increment form of the linear approximation.

4.4 Linear Approximation for         
2019年1月20日 14:39

   分区MATH 237 的第 28 页    

onenote:#4.4%20Linear%20Approximation%20for%20z=f(x,y)&section-id={7B0CCAC2-01E7-42A0-A950-225CC93C83DE}&page-id={DB554EA3-6080-4B86-B871-72F8D8A6EAEF}&object-id={A6E253AE-0638-0A48-1DF2-B86A2F561145}&BE&base-path=https://eduuwaterloo-my.sharepoint.com/personal/b246chen_edu_uwaterloo_ca/Documents/Notebooks/Fall%202018/Calculus%203%20Course%20Notes%20for%20MATH%20237.one


Linear Approximation in   

                                               

Consider a function         . By analogy with the case of a function of two variables, we define 

the linearization of  at          by

                                                              

The notation is becoming cumbersome, but one can improve matters by noting that the final 
three terms can be represented by the dot product of the vectors

The second vector is called the gradient of  at  .
Here are the formal definitions.

Definition: Gradient

                         

Suppose that         has partial derivatives at     . The gradient of  at  is defined by

Definition: Linearization Linear Approximation

                      

Suppose that          , has partial derivatives at     . The linearization of  at  is 
defined by 

                     
The linear approximation of  at  is

Linear Approximation in   

                         

The advantage of using vector notation is that equations (4.5) and (4.6) hold for a function of  
variables          . For arbitrary     , we have 

                              

And we define the gradient of  at  to be 

           
Then, the increment form of the linear approximation for     is

                      

Observe that this formula even works when    . That is, for a function     of one variable 
this gives            and the increment form of the linear approximation is

Which is our familiar formula from Calculus 1.

                                           

For       we have                          and the increment form of the linear 

approximation is 

Which matches our work above. Hence, we see that this is a true generalization.

4.5 Linear Approximation in Higher Dimensions
2019年1月20日 15:10
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Chapter 5 Differentiable Functions
2019年1月21日 18:25
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Theorem 1

                                       

If      exists, then       
         

     
        where

Proof:

         

     
          

                    

   
                          

         

   
                  

We have 

The result follows from taking the limit as    (details left as an exercise).

Definition: Differentiable

   
           

               

               
                

A function       is differentiable at      if

                                

Where

Theorem 2

   
           

                             

               
                                    

If a function       satisfies

Then                        .

Proof:

   
           

                             

               
                                    

Since 

      
   

 
                             

               
                                   

     
   

                        

     
                          

     
   

 
             

   
                 

           
          

The limit is 0 along any path. Therefore, along the path along    , we get

Similarly, approaching along    we get that          .

This implies that the tangent plane gives the best linear approximation to the graph         near      . Moreover, 

it tells us that the linear approximation is a "good approximation" if and only if  is differentiable at      .

Remark
Observe that for the linear approximation to exist at      both partial derivatives of  must exist at      . However, 
both partial derivatives existing does not guarentee that  will be differentiable. We say that the partial derivatives of  
existing at      is necessary, but not sufficient.

Exercise 1

     

  

     
              

               

Prove that 

5.1 Definition of Differentiability
2019年1月21日 18:25
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Is not differentiable at       

Solution:

We have    
                 

       
                

        

       
        and    

       

       
          

    

       
        , 

Wrong Procedure

           
   

               

 
                     

   

         

       
              

   
   

           
   

               

 
                     

   
 

 

  
    

Although the procedure is not correct, it can be imaged as plug in      for   and let the    
   

Same with   .

           
   

               

 
                  

 
  

       

 
          

           
   

               

 
                  

   

 
       

                                                      
  

     
          

        

     
           

So the error in the linear approximation is 

For  to be differentiable at      we need               

               

                       .  

   
   

               

                               
   

 
      

            

                 

     
   

 
      

   
   
  

         

     
   

 
 

   
        

  
 

   
       

If we approach the limit along    , we get

Therefore, the limit cannot equal 0 and hence  is not differentiable at       

Exercise 2

Prove that            is differentiable at       

Solution:

           
   

               

 
                     

   

   

 
       

           
   

                 

 
                      

   

   

 
       

                                                          

So the error in the linear approximation is 

For  to be differentiable at      we need           
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For  to be differentiable at      we need               

               

                        

   
   

               

                               
   

    

             

     
   

   

  
      

   

If we approach the limit along    , we get

Therefore,       is differentiable at      .

Exercise 3

Prove that            is not differentiable at       

Solution:

           
   

               

 
                     

   

   

 
   

The limit does not exist.

Thus,            is not differentiable at       

Definition: Tangent Plane

         
  

  
              

  

  
             

Consider a function       which is differentiable at       The tangent plane of the surface         at 

            is the graph of the linearization. That is, the tangent plane is given by

Since  is assumed to be differentiable at      , by Theorem 2, the tangent plane is the plane that best approximates 

the surface near the point              In this case, we say that at the point             the surface         is 

smooth.

Partial derivatives not exist  not differentiable?
Seems right, but the proof?
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Theorem 1
If       is differentiable at       then  is continuous at       

Proof:

                                

The error              is defined by 

                                             

Using the definition of            , this equation can be rearranged to read

              
             

               
                                                 

We can write 

   
           

                        

Since  is differentiable and by the limit theorems, we get

And so by definition,  is continuous at       

Exercise 1

Suppose that       is not continuous at         Can you draw a conclusion about whether  is 

differentiable at      ?

Solution:
Take the contrapositive of Theorem 1, we get

If       is not continuous at      ,  is not differentiable at       

5.2 Differentiability and Continuity
2019年1月31日 21:21
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Theorem 1 (Mean Value Theorem)

                         

If     is continuous on the closed interval        and  is differentiable on the open interval 

       , then there exists           such that

Theorem 2

If 
  

  
  and 

  

  
  are continuous at      , then       is differentiable at       

Proof:

                                                     

We derive an expression for the error              , given by

                                             

Since   and   are continuous then   and   exist in some neighborhood        For       

      , we write

                           

By adding and subtracting       . The Mean Value Theorem can be applied to each bracket, 

since one variable is held fixed, and the partial derivatives are assumed to exist. For the first 
bracket:

                                 

Where   lies between  and  . By adding and substracting              we obtain

                  
Where 

                            

                     

Similarly for the second bracket:

                  
Where

And   lies between  and  .

                           

Substitute equations (5.5) and (5.7) into (5.4) and then substitute equation (5.4) into (5.3) to 
obtain

               

               
                 

        

             
 

                 
 
                    

        

             
 

                 
 
                   

         

Where  and  are given by equations (5.6) and (5.8). It follows by the triangle inequality that

We can now apply the Squeeze Theorem with    and                

                                 

As            , it follows that

   
           

              
           

   

Since   and   are continuous at      , it follows from equations (5.6) and (5.8) that

   
           

               

               
                 

Equation (5.9) and the Squeeze Theorem now imply

So that  is differentiable at    , by definition.

5.3 Continuous Partial Derivatives and Differentiability
2019年1月31日 21:37
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So that  is differentiable at      , by definition.

Remark
The converse of Theorem 2 is not true. That is,       being differentiable at      does not imply 
that   and   are both continuous at       

Exercise 1

Prove that               
 

 
 

is differentiable at       

Solution:

  

  
            

   

               

 
                     

   

    
 
 
  

 
         

   
 

 
 
    

  

  
            

   

               

 
                     

   

    
 
 
  

 
         

   
 

 
 
    

By differentiation 

                            
  

  
              

  

  
                     

 
 
  

   
           

               

              
                 

           

       
 
 
  

       
 
   

          

     
           

       
 
 
  

   
Thus,       is differentiable at      .

Exercise 2

Prove that if          at      , then  is continuous at      .

Solution:
Since                are continuous at      .

  and   are differentiable at      

Then   and   are continuous at      

Then  is differentiable at      .
Then  is continuous at      .

Summary
Theorem 2 makes it easy to prove that a function  is differentiable at a typical point. One simply 
differentiates  to obtain the partial derivatives   ,   , and then checks that the partials are 

continuous functions by inspection, referring to the Continuity Theorems, as in Section 3.2. It is only 
necessary to use the definition of a differentiable function at an exceptional point.

Generalization

  

   
    

  

   
      

  

   
   

The definition of a differentiable function and theorems 1 and 2 are valid for functions of  
variables. The only change is that there are  partial derivatives,
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The error in the linear approximation for       is defined by 

                                        

Where

                                             

It is convenient to rearrange the definition of              to read

                               

The linear approximation

   
           

               

               
                 

For      sufficiently close to      , arises if one neglects the error term. In general, one has no 
information about              , and so it is not clear whether the approximation is reasonable. 

However, Theorem 2 provides an important piece of information about              , namely 

that if the partial derivatives of  are continuous at      , then  is differentiable and hence

In this case, the approximation (5.11) is reasonable for      sufficiently close to      , and we 

say that            is a good approximation of       near      .

5.4 Linear Approximation Revisited
2019年2月8日 22:16
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Chapter 6 The Chain Rule
2019年2月9日 14:08
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Theorem 1 (Chain Rule)

                                  

Let               , and let        and        . If  is differentiable at      and       

and       exist, then       exists and is given by

Proof:

          
    

          

    
           

By definition of the derivative,

                                      

Provided that this limit exists. By definition of     ,

                                                     

Since  is differentiable we can write

   
           

               

             
 

                 
 
                     

Where

          

    
                    

          

    
                     

          

    
             

                   

    
                

Since                , it follows from equations (6.7) and (6.8) that

   
    

                     

      
                   

You can now see the Chain Rule taking shape. We have to prove that

       

 
 
 

 
              

             
 

                 
 
                                     

                   

Define       by

By equation (6.9) and the definition of continuity,  is continuous at      .

                                 
 

                 
 

                

From the definition of  ,

                     

      
                                 

          

    
            

 

  
          

    
            

 
                             

 

Since                     

   
    

                     

      
                                         

 
         

 
                  

 
  

Since       and       exist and the fact that  is continuous at      we get

Since         .
It now follows from equation (6.6) and (6.10) that       exists, and is given by the desired chain 

rule formula.

Remark
When first studying the Chain Rule you might think that hypothesis that  is differentiable could 
be replaced by the weaker hypothesis that        and        exist. Exercise 1 shows that this 

is not the case.

6.1 Basic Chain Rule in Two Dimensions
2019年2月9日 14:08
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is not the case.

Exercise 1

           
 
 
  
                 

With reference to the theorem, let

Define                  and show that        . Further show that          and 

         , so that the Chain Rule fails. Draw a conclusion about  at      .

Solution:

              

             

One simple way to calculate      is to substitute.

           
   

               

 
                     

   

   

 
       

By symmetry,          

Thus, the Chain Rule fails.

Not sure what this means!

Sample Answer:  is not differentiable at      

Remark
In practice it is convenient to use stronger hypotheses in the Chain Rule. In particular, we usually 
assume that  has continuous partial derivatives at      and      and      are both continuous at 
  . This also allows one to obtain the stronger conclusion that      is continuous at   . These 
hypotheses can usually be checked quickly, either by using the Continuity Theorems, or in more 
theoretical situations, by using given information.

Exercise 2  Be sure to check it again!!!!
Stupid mistake,     should be        . So that's fine.

                                                  

                                                  

Let 

Calculate 
  

  
  when    in two ways, firstly by substituting  and  in  , and secondly by evaluating 

  

  
      

  

  
      

  

  
           

  

  
        and applying the Chain Rule.

Solution:

                                             

First, we substitute  and  in   
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Using L'Hospital's Rule

   
   

 
 

  
  

 
   

        
  
 
    

 
               

  

  
            

   

               

 
                     

   

                

 
                    

Same, using L'Hospital's Rule

   
   

 
 

                           

 
                    

 
 

 

 
  

  

  
    

  

  
   

  

  
    

  

  
   

  

  
   

  

  
         

 

 
     

 

 
  

The Chain Rule indicates

But what???

Exercise 3
Define                  . If              , find      . What condition on  will 

guarantee the validity of your work?

Solution:
        . Thus, we have                  where          and          .

Next, to apply the Chain Rule, we require that  is differentiable.

                                            

                                      

Assuming this condition, we get

                                                      

Taking    gives

We need to assume that  is differentiable at      

Exercise 4

           

A differentiable function       is given, and     is defined by

Where          and           Write out the Chain Rule for      . Calculate    
 

 
  , if 

   
 

 
  

  
   

 
       

   
   .

                                            

                                          

   
 

 
      

     
  
   

 
       

 

 
    

 

 
     

 

 
  

Solution:
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The Vector Form of the Basic Chain Rule

                 

We can use the dot product to rewrite the Chain Rule into a vector form. In particular, if we have

  

  
     

  

  
   

  

  
    

  

  
   

  

  
   

   
  

  
    

  

  
      

  

  
    

  

  
    

     
  

  
   

Where             and     are differentiable, then

 

  
                   

  

  
      

So, we have 

With                  

In this vector form, the Chain Rule holds for any differentiable function          .
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(6.11)

Regard  as the given function of  and  , and differentiate with respect to  , 
holding  fixed.

  

  
          

Regard  as the composite function of  and  , and differentiate with respect to  , 
holding  fixed.

  

  
          

It is important to understand the difference between the various partial derivatives in 
equations (6.11), and to know which variable is held constant. For example

1.

Equations of the form                  can be thought of as defining a change of 
coordinates in 2-space.

2.

Remarks

Remark
In some situation (see the example to follow) it is necessary to write a more precise form of the 
Chain Rule (6.11), one which displays the functional dependence.

                       

Let  denote the composite function of       and               

  

  
         

  

  
                  

  

  
         

  

  
                  

  

  
        

Then, the first equation in (6.11) can be written as 

With a similar equation for 
  

  
        

Algorithm

Take all possible paths from the differentiated variable to the differentiating variable.1.
For each link (-) in a given path, differentiate the upper variable with respect to the lower 
variable being careful to consider if this is a derivative or a partial derivative. Multiply all 
such derivatives in that path.

2.

Add the products from step 2 together to complete the Chain Rule.3.

To write the Chain Rule from a dependence diagram we:

6.2 Extensions of the Basic Chain Rule
2019年2月10日 20:05

   分区MATH 237 的第 43 页    



Don't Quite Understand...

6.3 The Chain Rule for Second Partial Derivatives
2019年2月12日 18:12
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Chapter 7 Directional Derivatives and the Gradient Vector
2019年2月13日 8:44
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Definition: Directional Derivative

          
 

  
                  

   

The directional derivative of       at a point      in the direction of a unit vector           is 

defined by

Provided the derivative exists.

Theorem 1

                    

If       is differentiable at      and           is a unit vector, then

Proof:

           
 

  
                  

   

                   
 

  
                           

 

  
            

   

                                          
   

                       

                 

Since  is differentiable at      we can apply the Chain Rule to get

Be careful to check the condition of Theorem 1 before applying it. If  is not differentiable at 
     , then we must apply the definition of the directional derivative.

1.

If we choose            or            , then the directional derivative is equal to the 
partial derivatives   or   respectively.

2.

Remarks

Exercise 1

             
Find the directional derivative of  defined by 

At the point         in the direction of the vector             .

Solution:

    
        

          
           

 

 
   

 

 
    

 

 
   

The vector is not a unit vector, so we first normalize it.

  

  
           

Similarly, 
  

  
         

We have 

                                

So                             

                             
 

 
   

 

 
    

 

 
     

 

 
      

 

 
      

 

 
      

 

 
     

7.1 Directional Derivatives
2019年2月13日 8:45
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The Greatest Rate of Change

Theorem 1

If       is differentiable at      and              , then the largest value of          is 

           , and occurs when   is in the direction of        .

Proof:

                     

                       

                 

Since  is differentiable at      and         we have

Where  is the angle between   and        . Thus,          assumes its largest value when 

      i.e.    . Consequently, the largest value of          is            and occurs when 

  is in the direction of        .

Exercise 1
Find the largest rate of change of                at the point      , and the direction in 

which it occurs.

Solution:
  

  
    

 

    
      

  

  
    

  

    
      

         
 

    
       

  

    
       

             
The direction is      

Exercise 2
Given a non-constant function       and a point      such that the directional derivative at 
     is independent of the direction. What can you say about the tangent plane of the surface 
        at the point      ?

Solution:

         
  

  
              

  

  
             

According to the definition of tangent plane, 

                    
Since 

             

Plane does not exist?
Plane is horizontal.

Theorem 1 also applies in any direction. That is, if          , is differentiable at  and      

is a unit vector, then the largest value of     is    , and it occurs when  is in the 

7.2 The Gradient Vector in Two Dimensions
2019年2月21日 8:00
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is a unit vector, then the largest value of        is          , and it occurs when   is in the 

direction of      .

The Gradient and the Level Curves of  

Theorem 2
If          in a neighborhood of      and              , then        is orthogonal to 

the level curve         through       

Proof:

                                  

Since              , by the Implicit Function Theorem (see Appendix 1), the level curve 

        can be described by parametric equations              for    where     

and     differentiable. Hence, the level curve may be written as                    

Suppose

                                       

Since  is differentiable, we can take the derivative of this equation with respect to  using the 
Chain Rule to get 

                 
        

On setting     we get

Thus,        is orthogonal to          
      which is tangent to the level curve.

Exercise 3

       
 

  
                       

Prove the level curves of the functions  and  defined by

Intersect orthogonally. Illustrate graphically. 

The Gradient Vector Field

The gradient of  associates a vector with each point of the domain of  , and is referred to as a 
vector field. It is re[resented graphically by drawing        as a vector emanating from the 
corresponding point       
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Theorem 1

If            in a neighborhood of        and                  , then          is 

orthogonal to the level surface           through        .

The details are similar to proof of Theorem 7.2.2.

Exercise 1
Find the equation of the tangent plane to the ellipsoid              at the point 

       
   
  

Solution:

             

Exercise 2

  
  

     
                     

Find the equation of the tangent plane to the surface 

Hint: Rewrite the equation as              and use the above approach.

7.3 The Gradient Vector in Three Dimensions
2019年2月21日 15:43
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Chapter 8 Taylor Polynomials and Taylor's Theorem
2019年2月21日 18:57
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Definition: 2nd degree Taylor polynomial

The second degree Taylor polynomial         of       at      is given by

                                               

  
 

 
                                                   

 
 

                    

In general, it approximates       for      sufficiently close to       

With better accuracy than the linear approximation.

       
 

 
       

 

 
    

Find the Taylor polynomial              for1.

At the point            , by calculating the appropriate partial derivatives.

       
 

 
         

 

 
        

Verify your results by letting          and writing2.

Expand and neglect powers higher than 2 and then convert back to  and  . This type of 
algebraic derivation can only be done for a polynomial function.

Exercise 1

1.

                

             

         
    
  

 

         
   
  

 

Thus,

              
 

 
   

 

 
               

Not sure what the question mean2.

Solution:

8.1 The Taylor Polynomial of Degree 2
2019年2月21日 18:57
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Review of the 1-D case
Theorem 1

                            
If       exists on      , then there exists a number  between  and  such that 

        
 

 
              

Where

The 2-D Case
Theorem 2 (Taylor's Theorem)

                                                     

If          in some neighborhood       of      , then for all             there exist a 

point      on the line segment joining      and      such that 

              
 

 
                                                   

 
 

Where

Proof:
The idea is to reduce the given function  of two variables to a function  of one variable, by 

considering only points on the line segment joining      and      .

                               

We parameterize the line segment  from      to      by

                                             

For simplicity write      and      . Then             and Taylor's formula 
assumes the form

              
 

 
                                     

Where

                   

Define  by

                         

                                           

Since  has continuous second partials by hypothesis, we can apply the Chain Rule to conclude 
that   and    are continuous and are given by

For       

                
 

 
         

Since    is continuous on the interval      , Taylor's formula may be applied to  on this 
interval. That is, we can set    and    in equations (8.2) and (8.3). It follows that there 
exists a number   , with       , such that

                                  

            and
                       

Each term in this equation can be calculated using equations (8.5)-(8.7), giving

 

 
                      

In addition, if we let            , then

And equation (8.8) becomes precisely the modified version of Taylor's formula.

Remark
Like the one variable case, Taylor's Theorem for     is an existence theorem. That is, it only 

8.2 Taylor's Formula with Second Degree Remainder
2019年2月24日 12:58
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Like the one variable case, Taylor's Theorem for       is an existence theorem. That is, it only 

tells us that the point      exists, but not how to find it.

Exercise 1
Let              . Use Taylor's Theorem to show that the error in the linear approximation 

           is at most                
 
 if      and      .

Solution:

              
 

 
                                                   

 
 

From Taylor's Theorem, we get

             

         

           

          

            

As             
              

               
 

 
                                              

 
 

  
 

 
                               

 
 

  
 

 
                             

 
 

  
 

 
                  

 
 

  

          

Remark
The most important thing about the error term              is not its explicit form, but rather 

its dependence on the magnitude of the displacement                 We state the result as a 

Corollary.

Corollary 3

                                
 
                      

If          in some closed neighborhood       of      , then there exists a positive 

constant  such that
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Exercise 1

Write out              explicitly using subscript notation.

Theorem 1
Taylor's Theorem of order k

                                  

If            at each point on the line segment joining      and      , then there exists a 

point      on the line segment between      and      such that

              
 

      
                        

   
      

Where

Corollary 2

   
           

                      

               
 

                      

If          in some neighborhood of      , then 

Corollary 3

                                       
   

If            in some closed neighborhood       of      , then there exists a constant 

   such that

For all              

                 

The final stage in the process of generalization is to consider functions of  variables        
   One has simply to replace the differential operator

                       

By 

         
Letting            , we can be write this concisely in vector notation as

8.3 Generalizations
2019年3月5日 15:58
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Chapter 9 Critical Points
2019年3月5日 20:13
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Definition
Local Maximum and Minimum

A point      is a local maximum point of  if              for all      in some 

neighborhood of       
A point      is a local minimum point of  if              for all      in some 

neighborhood of       

Theorem 1

                 
If      is a local maximum or minimum point of  , then 

Or at least one of   or   does not exist at       

Proof:
Consider the function  defined by            . If      is a local maximum/minimum point 
of  , then    is a local maximum/minimum point of  , and hence either        or      
does not exist. Thus it follows that either          or        does not exist. A similar 
argument gives          or        does not exist.

Definition
Critical Point

  

  
           

  

  
        

A point      in the domain of       is called a critical point of  if 

Or if at least one of the partial derivatives does not exist at       

Definition
Saddle Point 

               and                

A critical point      of       is called a saddle point of  if in every neighborhood of      

there exist points        and        such that

Given       , find all critical points of  .1.

Determine whether the critical points are local maxima, minima or saddle points.2.

The problem that we are faced with has two parts.

It is essential to solve equations (9.1) and (9.2) systematically, by considering all possible 
cases, in order to find all critical points.

1.

                    

You should be aware that we can only explicitly find the critical points for simple 
functions  . The equations

2.

Are a system of equations which are generally non-linear, and there is no general 
algorithms for solving such systems exactly. There are, however, numerical methods for 
finding approximate solutions, one of which is a generalization of Newton's method. If you 
review the one variable case, you might see how to generalize it, using the tangent plane. 
It's a challenge!

Remark

9.1 Local Extrema and Critical Points
2019年3月5日 20:14
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It's a challenge!

Exercise 1
Find all critical points of               

Solution:
                

                

       

We get two equations 
               

               

Case 1:
               

Critical point      

Case 2:
              
             
       
    

                 

            

   

Critical point      

Exercise 2
Find all critical points of                  

Case 2??? How to deal with this situation?

Solution:

                       

               

We get two equations

                      

               

Case 1:

               
 

 
           

Case 2:

                         

               

Exercise 3
Give a function       with no critical points.
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Review of the 1-D case

                     
 

 
              

For a function     of one variable, the second degree Taylor polynomial approxiamtion is 

          
 

 
              

For  sufficiently close to  . If    is a critical point of  , then        , and the 
approximation can be rearranged to give

Thus, for  sufficiently close to  ,          has the same sign as        If         , then 
           for  sufficiently close to  and    is a minimum point. If         , then 
           for  sufficiently close to  and    is a local maximum point. There is no 
conclusion if          

The 2-D case

                    

For          , the second degree Taylor polynomial approximation is 

                 
For      sufficiently close to       If      is a critical point of  such that 

              
 

 
                                                   

 
 

Then the approximation can be rearranged to yield

For      sufficiently close to      . The sign of the expression on the right will determine the 

sign of              , and hence whether      is a local maximum, local minimum or saddle 

point.

The expression on the right is called a quadratic form, and at this stage it is necessary to 
discuss some properties of these objects.

Quadratic Forms
Definition
Quadratic Form

           
             

 
A function  of the form

Where        and    are constants, is called a quadratic form on    

Remark
Semidefinite quadratic forms may be split into two classes, positive semidefinite and negative 
semidefinite. The matrix  above would be classified as positive semidefinite.

If  is not a diagonal matrix, the nature of  (or of       ) is not immediately obvious. For 
example, even if all entries of  are positive, it does not follow that  is a positive definite 
matrix.

Theorem 1
Second Partial Derivatives Test

                 

If        is positive definite, then      is a local minimum point of  .1.
If        is negative definite, then      is a local maximum point of  .2.
If        is indefinite, then      is a saddle point of  .3.

Suppose that          in some neighborhood of      and that 

9.2 The Second Derivative Test
2019年3月7日 20:57
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The argument preceding the theorem is not a proof, since it involves an approximation. 
One can use Taylor's formula and a continuity argument to give a proof. See Section 9.3.

1.

Note the analogy with the second derivative test for functions of one variable. The 
requirement         , which implies a local minimum, is replaced by the requirement 
that the matrix of second partial derivatives        be positive definite.

2.

Remarks

Theorem 2

 is positive definite if and only if    and      1.
 is negative definite if and only if    and      2.
 is indefinite if and only if    3.
 is semidefinite if and only if    4.

If            
             

 and             
 , then

Remark
Observe that  is the determinant of the associated symmetric matrix.

Example 3
Omitted

Exercise 1
Fill in the details of Example 3 above.

Exercise 2
Find and classify all critical points of the function                   

Exercise 3
Find and classify all critical points of the function                   

Remark
Another way of classifying the Hessian matrix is by finding its eigenvalues. In particular, a 
symmetric matrix is positive definite if all of its eigenvalues are positive, negative definite if all 
of its eigenvalues are negative, and indefinite if has both positive and negative eigenvalues.

Degenerate Critical Points
If        is semidefinite, so that the second partial derivative test gives no conclusion, we say 
that the crucial point      is degenerate. In order to classify the critical point, one has to 

investigate the sign of              in a small neighborhood of      .

Generalizations

       
   

      
          

The definitions of local maximum point, local minimum point and critical point can be 
generalized in the obvious way to functions  of  variables. The Hessian matrix of  at  is the 
   symmetric matrix given by 

      
   

      
               

 

     

Where            . The Hessian matrix can be classified as positive definitem negative 
definite, indefinite or semidefinite by considering the associated quadratic form in    

            

As in   . The second derivative test as stated in   now holds in   . It can be justified 
heuristically by using the second degree Taylor polynomial approximation,

      
 

  

   

      
             

 

     

Which leads to 
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Generalizing equation (9.3).

Level Curves Near a Critical Point

A point at which              is called a regular point of  .

Convex Functions
1-D Case

                          for all    , for any     1.

For    ,           
         

   
             for         2.

We say that a twice differentiable function     is strictly convex if         for all  and  is 
convex is         for all  . Thus the term convex means "concave up". Convex functions have 
two interesting properties.

Follows from Taylor's Theorem:            
      

 
          where  is between  and 

 . Thus          for    , giving           for all    .

1.

Let                 
         

   
               Then            and        

         We must show that       for         By the Mean Value Theorem 
         

   
              for some         Note that             

         

   
                     

Thus        . Since         then      is strictly increasing. Since        then 
       on      and        on       This implies that     is strictly decreasing on 
     and strictly increasing on      . Since       and       we get that       
on      and on      . Therefore,       on      , as required.

2.

Proof:

Remark
(1) says that the graph of  lies above any tangent line, and (2) says that any secant line lies 
above the graph of  .

2-D Case
Suppose       has continuous second partial derivatives. We say that  is strictly convex if 

       is positive definite for all      . By Theorem 2,  is strictly convex means      and 

          
   for all      . We get a result which is analogous to Theorem 3.

Theorem 4

                  for all            , and 1.

                                                        for      ,

                

2.

If       has continuous second partial derivatives and is strictly convex, then

 

             
 

 
                                                   

 
 

Follows from Taylor's Theorem:1.

Where      is on the line segment from      to      . Since           , 

                                            for            by Theorem 2. 

Therefore,                   for             

                             

We parameterize the line segment  from        to        by2.

Proof:
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For simplicity write        and        . Define     by

                         

                                           

Since  has continuous second partials by hypothesis, we can apply the Chain Rule to 
conclude that   and    are continuous and are given by 

          
         

   
                           

For       Since            and                             
 

  for all  , 

        by Theorem 2. Thus, by Theorem 3, part (2):

Therefore,                                                         for 

     as required.

Remark
(1) says that the graph of  lies above the tangent plane and (2) says that the cross-section of 
the graph of  above the line segment from        to        lies below the secant line.

Theorem 5
If          is strictly convex and has a critical point      , then              for all 

           and  has no other critical point.

Proof:
Note that                   . Thus,              for all            by Theorem 4, part 

(1). If  has a second critical point        , then by the reasoning just given                

and                which is a contradiction.
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Lemma 1

Let  
  
  

 be a positive definite matrix. If              and       are sufficiently small, then 

     

    
 is positive definite.

Proof:

                   
Let  and   be the quadratic forms determined by the given matrices. 

                
And similarly for         We perform the change of variables

             
To obtain

                             
Where 

Since for                 and  is positive definite, we must have       for all  ,   
     

     
      

    
Let

          for all            
Then    and bu equation (9.11)

                           

We are given that              and       are sufficiently small. Let

                                                 

                  

             

                     

      

By equation (0.10) and the triangle inequality,

                 
 

 
     

We now choose   
 

 
   Then

                
 

 
     

      
 

 
                

  
 

 
     

Which implies

This shows that          for all            . Therefore,        is positive definite.

Remark
The lemma is also true if "positive definite" is replaced by "negative definite" or "indefinite".

Theorem 2
(The Second Partial Derivative Test)

                 

If        is positive definite, then      is a local minimum point of  .1.
If      is negative definite, then    is a local maximum of  .2.

Suppose that          in some neighborhood of      and that

9.3 Proof of the Second Partial Derivative Test
2019年3月11日 8:35
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If        is negative definite, then      is a local maximum of  .2.
If        is indefinite, then      is a saddle point of  .3.

Proof:
We will prove (1).

                 
We apply Taylor's formula with second order remainder. Since

              
 

 
                                                   

 
 

Taylor's formula can be written as 

Where      lies on the line segment joining      and      . The coefficient matrix in the 

quadratic expression on the right side of (9.13) is hte Hessian matrix         

                                                                   

We are given that        is positive definite. By the lemma, there exists    such that if 

                 

Then        is positive definite. Since the second partials of  are continuous at      , the 
definition of continuity implies that there exists a    such that

                               

Implies (9.14) and hence that        is positive definite. Since

It follows that        is also positive definite. It now follows from equation (9.13) and the 

definition of positive definite matrix, that if                    , then               

  Thus, by definition      is a local minimum point of  .

Parts (2) and (3) of the second derivative test can be proved in a similar way using the modified 
lemma.
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Chapter 10 Optimization Problems
2019年3月13日 8:18
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Definition
Absolute Maximum and Minimum

                for all        
A point        is an absolute maximum point of  on  if1.

The value       is called the absolute maximum value of  on  .

                               

A point        is an absolute minimum point of  on  if2.

The value       is called the absolute minimum value of  on  .

Given a function       and a set      

The Extreme Value Theorem

Theorem 1
(The Extreme Value Theorem)

                              

If     is continuous on a finite closed interval  , then there exists        such that

Exercise 1

 is closed, but  does not have an absolute maximum of  .1.
 is finite and  is continuous on  , but  does not have an absolute maximum on  .2.
 is finite and  is continuous on  , but  does not have an absolute minimum.3.

Given a function     and an interval  such that 

Definition
Bounded Set

A set     is said to be bounded if and only if it is contained in some neighbourhood of the 
origin.

Definition 
Boundary Point

Given a set     , a point         is said to be a boundary point of  if and only if every 
neighbourhood of      contains at least one point in  and one point not in  .

Definition
Boundary of  

The set     of all boundary points of  is called the boundary of  .

Definition
Closed Set

A set     is said to be closed if  contains all of its boundary points.

Theorem 2

                                      

If       is continuous on a closed and bounded set     , then there exists points 
             such that 

10.1 The Extreme Value Theorem
2019年3月13日 8:20
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Remark
A function       may have an absolute maximum and/or an absolute minimum on a set   

  even if the conditions are not satisfied. We just cannot guarantee the existence with the 
theorem.
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Algorithm

Find all critical points of  that are contained in  . Evaluate  at each such point.1.
Find the maximum and minimum points of  on the boundary      2.
The maximum value of  on  is the largest value of the function found in steps (1) and 
(2). The minimum value of  on  is the smallest value of the function found in steps (1) 
and (2).

3.

Let     be closed and bounded. To find the maximum and/or minimum value of a function 

      that is continuous on  ,

The absolute maximum and/or minimum value may occur at more than one point in  .1.
It is not necessary to determine whether the critical points are local maximum or 
minimum points.

2.

Remarks

Exercise 1
Find the maximum of             on the set                      

Solution:
Skip for now....

Exercise 2
Find the maximum value of the function               on the triangular region with 

vertices            and       

10.2 Algorithm for Extreme Values
2019年3月13日 8:45
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Method of Lagrange Multipliers

We want to find the maximum (minimum) value of a differentiable function       subject to the 

constraint         where     , or, more geometrically, find the maximum (minimum) 

value of       on the level set          

              

If       has a local maximum (or minimum) at      relative to nearby points on the curve 

        and              , then, by the Implicit Function Theorem (see Appendix 1), 

        can be described by parametric equations

                 

With  and  differentiable, and                    for some    Define

        

The function  gives the values of  on the constraint curve, and hence has a local maximum (or 
minimum) at   . It follows that

                                           
Assuming  is differentiable we can apply the Chain Rule to get

                             

Evaluating this at   and using (10.2) gives

                 
        

This can be written as 

                 
        

Recall the geometric interpretation of the gradient vector        proven in Theorem 7.2.2 that 
       , if non-zero, is orthogonal to the level curve         at       Thus, since 

         
      is the tangent vector to the constraint curve (10.1) we also have

                

Since we are working in two dimensions, equations (10.3) and (10.4) imply that        and 
       are scalar multiples of each other. That is, there exists a constant  such that 

This leads to the following procedure, called the Method of Lagrange Multipliers.

Algorithm (Lagrange Multiplier Algorithm)

                and         1.
             and         2.
     is an end point of the curve         3.

Assume that       is a differentiable function and     . To find the maximum value and 

minimum value of  subject to the constraint          evaluate       at all points      

which satisfy one of the following conditions.

The maximum/minimum value of       is the largest/smallest value of  obtained at the 

points found in         

The variable  , called the Lagrange multiplier, is not required for our purposes and so 
should be eliminated. However, in some real world applications, the value of  can be 
extremely useful.

1.

Case (2) and (3) are both exceptional. Observe that case (2) must be included since we 
assume that              in the derivation.

2.

In the curve         is unbounded, then one must consider                     for 

   satisfying        

3.

Remark

10.3 Optimization with Constraints
2019年3月13日 9:05
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     satisfying          

Exercise 1
Exercise 2
Omitted

Functions of Three Variables
Algorithm

                    and           1.
                 and           2.
       is a boundary point of the surface           3.

To find the maximum/minimum value of a differentiable function         subject to 
          such that     , we evaluate         at all points        which satisfy one of 

the following:

The maximum/minimum value of         is the largest/smallest value of  obtained from all 
points found in (1) - (3).

Remark
If condition (1) in the algorithm holds, it follows that the level surface                  and 

the constraint surface           are tangent at the point        , since their normals 

coincide (See Theroem 7.3.1)

Remark
Keep in mind the geometric interpretation. The level sets           are spheres centered on 

the point         The minimum distance occurs when one of the spheres touches (i.e. Is tangent 
to) the constraint surface which is the sphere           . At the point of tangency the 

normals are parallel, i.e.        

Exercise 3
Omitted

Generalization

                           

The method of Lagrange multipliers can be generalized to functions of  variables          

and with  constraints of the form 

                                               

In order to find the possible maximum and minimum points of  subject to the constraints 
(10.18), one has to find all points  such that 

The scalars        are the Lagrange multipliers. When                 , this reduces to 
previous algorithms.
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Chapter 11 Coordinate Systems
2019年3月23日 18:46
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In a plane we choose a point  called the pole (or origin). From  we draw a ray called the polar 
axis.
Let  be any point in the plane. We will represent the position of  by the ordered pair      where 
   is the length of the line   and  is the angle between the polar axis and   . We call  and 
 the polar coordinates of  .

We assume, as usual, that an angle  is considered positive if measured in the 
counterclockwise direction from the polar axis and negative if measured in the clockwise 
direction.

1.

We represent the point  by the polar coordinates      for any value of  .2.
We are restricting  to be non-negative to coincide with te interpretation of  as distance. 
Many textbooks do not put this restriction on  .

3.

Since we use the distance  from the pole in our representation, polar coordinates are 
suited for solving problems in which there is symmetry about the pole.

4.

Remarks

Relationship to Cartesian Coordinates

                 
 

        

             
 

 
  

Remark

The equation      
 

 
 does not uniquely determine   since over       each value of 

    occurs twice. One must be careful to choose the  which lies in the correct quadrant.

Graphs in Polar Coordinates
The graph of an explicitly defined polar equation       or       , or an implicitly defined 
polar equation         , is a curve that consists of all points that have at least one polar 
representation      that satisfies the equation of the curve.

Exercise 1

Sketch the polar equation   
 

 
  

Omitted

Remark
The polar equation     gives a logarithmic spiral which often appears in nature.

Exercise 2
Sketch the polar equations       and           

Exercise 3
Convert the equation of the curve        to polar coordinates.

Area in Polar Coordinates

     
         

 
 

 
       

   
 
  

   

   

  
 

 
        

 
 

 

  

Exercise 4

Find the area inside the lemniscate          
       

 

Algorithm

11.1 Polar Coordinates
2019年3月23日 18:46
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Algorithm

Find the points of intersections.1.
Graph the curves and split the desired region into easily integrable regions.2.
Integrate3.

To find the area between two curves in Polar coordinates, we use the same method we used for 
doing this in Cartesian coordinates.

Remark
Finding points of intersection can be tricky, especially at the pole/origin which does not have a 
unique representation:      for any  represents the origin, so simply setting expressions 
equal to each other may 'miss' that point. It is essential to sketch the region when finding points 
of intersection.

Exercise 5
Find the area between the curves       and       .
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Observe that we can extend polar coordinates to 3-dimensional space by introducing another axis, 
called the axis of symmetry, through the pole perpendicular to the polar plane.

Remark
Notation for cylindrical coordinates may vary from author to author. In particular, in the sciences 
they generally use the Standard ISO 31-11 notation which gives the cylindrical coordinates as 

        

                 
        

             
 

 
  

        

Remark
Cylindrical coordinates are useful when there is symmetry about an axis. Thus, it is sometimes 
desirable to lie the polar axis and axis of symmetry along different axes.

Graphs in Cylindrical Coordinates
Exercise 1
Sketch the graph of     in cylindrical coordinates.

Exercise 2

Find the equation of   
 

                  in cylindrical coordinates.

11.2 Cylindrical Coordinates
2019年3月23日 22:58
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We now extend this idea to another 3-dimensional coordinate system called spherical 
coordinates.

Remark
The symbols used for spherical coordinates also vary from author to author as does the order in 
which they are written. In mathematics, it is not uncommon to find  replaced by  . The 
standard ISO 31-11 convention uses  as the polar angle and  as the angle with the positive  -
axis. Therefore, it is very important to understand which notation is being used when reading 
an article.

                        
            

                 
 

 
  

             
 

                     
             

Graphs in Spherical Coordinates

Exercise 1
Convert            to spherical coordinates.

11.3 Spherical Coordinates
2019年3月25日 6:04
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Definition
Vector-Valued Function

A function whose domain is a subset of   and whose codomain is   is called a vector-valued 
function.

Remark
While we represent            as a point in   , remember that it can also be thought of as a 

position vector.

Definition
Mapping

A vector-valued function whose domain is a subset of   and whose codomain is a subset of   

is called a mapping (or transformation).

Chapter 12 Mappings of   into   

2019年3月25日 6:13
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A pair of equations

                            

Associates with each point         a single point         , and thus defines a vector-valued 

function

The scalar functions  and  are called the component functions of the mapping.

In general, if a mapping  from   to   acts on a curve  in its domain, it will determine a curve 
in its range, denoted by     and called the image of  under  .

More generally, if a mapping  from   to   acts on any subset  in its domain it will 
determine a set     in its range, called the image of  under  .

Exercise 1
Find the image of the circle            under the mapping  defined in Example 1.

Observe that each of the images are exactly what we could get if we sketched the 
equations as in Chapter 11.

1.

The mapping from polar coordinates to Cartesian coordinates in non-linear. The image of 
a straight line is not necessarily a straight line.

2.

Remarks

Exercise 2

                     

Find the image of the square

                   

Under the mapping defined by 

12.1 The Geometry of Mappings
2019年3月25日 6:22
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Definition
Derivative Matrix

                      

The derivative matrix of a mapping defined by

   

 
 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 
 

Is denoted   and defined by

    
  
  

       
  
  

 

If we introduce the column vectors 

            
Then the increment form of the linear approximation for mappings becomes

                       

For   sufficiently small. Thus, the linear approximation for mappings is

Exercise 1

                              

Consider the mapping defined by 

Approximate the image of the point           under  .

Generalization

              

 

              

A mapping  from   to   is defined by a set of  component functions:

                            
Or, in vector notation

      

 
 
 
 
 
 
   
   
    

   
   
   

   
   
   
    

   
   
   

 
 
 
 
 
 

If we assume that  has continuous partial derivatives, then the derivative matrix of  is the 
   matrix defined by

                 
As expected, the linear approximation for  at  is

    
   

 
   

          
   

 
   

    

Where 

12.2 The Linear Approximation of a Mapping
2019年3月25日 13:06
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Theorem 1
(Chain Rule in Matrix Form)

                          

Let  and  be mappings from   to   . If  has continuous partial derivatives at      and  
has continuous partial derivatives at             , then the composite mapping    has 
continuous partial derivatives at      and

Proof:

                

 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 

 
 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 
 

  

 
 
 
 
 
  

  
   

  

  
    

  

  
   

  

  
   

  

  
   

  

  
    

  

  
   

  

  
   

  

  
   

  

  
    

  

  
   

  

  
   

  

  
   

  

  
    

  

  
   

  

  
   

 
 
 
 
 

  

 
 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 
 

             

Define the component functions for     and    as in equations (12.1) and (12.2). Then, the 
chain rule for scalar functions gives

As required.

Exercise 1

                                    
          

       

Use the chain rule in matrix form to find the derivative matrix        1.
Calculate             2.
Use the linear approximation of mappings to approximate the image of       
           under    .

3.

Consider the mappings defined by 

12.3 Composite Mappings and the Chain Rule
2019年3月25日 18:05

   分区MATH 237 的第 79 页    



Chapter 13 Jacobians and Inverse Mappings
2019年3月25日 18:29
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Definition
Invertible Mapping
Inverse Mapping

              if and only if             

Let  be a mapping from a set    onto a set    . If there exists a mapping    , called the inverse 

of  which maps    onto    such that

Then  is said to be invertible on    .

Definition
One-to-One

A mapping  from   to   is said to be one-to-one on a set    if and only if              

implies            , for all                 

Theorem 1
Let  be a mapping from a set    onto a set    . If  is one-to-one on    , then  is invertible 

on    .

Theorem 2

              

Consider a mapping  which maps    onto    . If  has continuous partial derivatives at   

   and there exists an inverse mapping    of  which has continuous partial derivatives at 

          , then 

Proof:

                        
By the Chain Rule in Matrix Form we get

               

 
 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 
 

  
  
  

   

Then, by equation (13.1) we have

As required.

Remark
The fact that we could solve and obtain a unique solution for  and  in the preceding example 
proves that  has an inverse mapping on   . It is only in simple examples that one can carry out 
this step. Hence it is useful to develop a test to determine if a mapping  has an inverse 
mapping.

Definition
Jacobian

                            

The Jacobian of a mapping 

    

    
             

  

  

  

  
  

  

  

  

Is denoted 
      

      
     , and is defined by

13.1 The Inverse Mapping Theorem
2019年3月25日 18:30
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Exercise 1

                          

Calculate the Jacobian 
      

      
     of the mapping  given by

Corollary 3

                            

Consider a mapping defined by

      

      
                

Which maps a subset    onto a subset    . Suppose that  and  have continuous partials on 

   . If  has an inverse mapping    , with continuous partials on    , then the Jacobian of  is 

non-zero:

Remark

      

      
                        

 
 
 
 
  

  
   

  

  
   

  

  
   

  

  
   

 
 
 
 

The notation 
      

      
     for the Jacobian reminds one which partial derivatives have to be calculated. 

Thus, if  maps            and is one-to-one, then the inverse mapping    maps       

     , and the Jacobian of the inverse mapping is denoted by

Recall from linear algebra that                 for all    matrices    . Thus, we can 
deduce from Theorem 2 a simple relationship between the Jacobian of a mapping and the 
Jacobian of the inverse mapping. We state this as a corollary to Theorem 2.

Corollary 4
(Inverse Property of the Jacobian)

      

      
       

 

      

      
      
       

If the hypotheses of Theorem 2 hold, then

Proof:

                   

By Theorem 2,

                           

                             

Taking the determinant of this equation gives

  
      

      
      

      

      
      

Thus, by definition of the Jacobian,

      

      
       

 

      

      
      
       

Since        is invertible, we have 
      

      
       . Therefore, we get

Theorem 5
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Theorem 5
(Inverse Mapping Theorem)

If a mapping             has continuous partial derivatives in some neighborhood of      

and 
      

      
       at      , then there is a neighborhood of      in which  has an inverse mapping 

              which has continuous partial derivatives.

Exercise 2

                
 

 
           

        
  

 

 
            

        
  

Referring to Example 3, show that the inverse mapping is given by
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Exercise 1

Let                 and let  be the square pictured in the diagram. Will the image of  under 

 have more or less area? Explain your answer.

Remark

         
  
  

 

For a linear mapping                           where        are constants, the 

derivative matrix is 

And this the linear approximation is exact by Taylor's Theorem since all second partials are 
zero. Therefore, for a linear mapping, the approximation (13.3) becomes an exact relation.

Exercise 2
Show that the linear mapping                        preserves area. Illustrate the 

action of the mapping by finding the image of the square with vertices                  and 
     .

Exercise 3

                                       

Use the Jacobian to verify the well-known result that any linear mapping  which is a rotation,

Where  is a constant, preserves areas.

Generalization
At the end of Section 12.2, we generalized the concept of a mapping  from   to   to a 
mapping  from   to   , and defined the Jacobian of the mapping, as follows.

Definition
Jacobian

                      

For a mapping defined by 

          

          
                            

 
 
 
 
 
 
   
   
    

   
   
   

   
   
   
    

   
   
   

 
 
 
 
 
 

Where            and            , the Jacobian of  is

Geometrical Interpretation of the Jacobian in 3-D

13.2 Geometrical Interpretation of the Jacobian
2019年3月26日 12:38
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Exercise 1
Find a linear mapping  which will transform the ellipse             into the circle    
    .

Exercise 2
Find an invertible mapping which will transform the region     in the first octant bound by    

                          into a cube in the    -space.

13.3 Constructing Mappings
2019年3月26日 20:16
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Chapter 14 Double Integrals
2019年3月28日 11:49
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Definition
Integrable

Let     be closed and bounded. Let  be a partition of  as described above, and let     

denote the length of the longest side of all rectangles in the partition  . A function       which 

is bounded on  is integrable on  if all Riemann sums approach the same value as       .

Definition
Double Integral

        
 

 

      
    

            

 

   

If       is integrable on a closed bounded set  , then we define the double integral of  on  

as

Interpretation of the Double Integral

       
 

 

  

When you encounter the double integral symbol

Think of "limit of a sum". In itself, the double integral is a mathematically defined object. It has 
many interpretations depending on the meaning that you assign to the integrand       . The 

"  " in the double integral symbol should remind you of the area of a rectangle in a partition of 
 .

Double Integral as Area:

                         

The simplest interpretation is when you specialize  to be the constant function with value 
unity:

       
 

 

  

Then the Riemann sum (14.1) simply sums the areas of all rectangles in  , and the double 
integral serves to define the area     of the set  :

Double Integral as Volume:

       
 

 

  

If         for all        , then the double integral 

                               

Can be interpreted as the volume     of the origin defined by

Which represents the solid below the surface         and above the set  in the   -plane. 

The justification is as follows.

           

The partition  of  decomposes the solid  into vertical "columns". The height of the column 
above the  -th rectangle is approximately         , and so its volume is approximately

                 

 

   

The Riemann sum (14.1) thus approximates the volume      

         
 

 

  

As       the partition becomes increasingly fine, so the error in the approximation will tend 
to zero. Thus, the volume     is

14.1 Definition of Double Integrals
2019年3月28日 11:49
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Double Integral as Mass:

              

Think of a thin flat plate of metal whose density varies with position. Since the plate is thin, it is 
reasonable to describe the varying density by an "area density", that is a function       that 

gives the mass per unit area at position      . In other words, the mass of a small rectangle of 
area    located at position        will be approximately 

         
 

 

  

The Riemann sum       corresponding to a partition  of  will approximate the total mass  
of the plate  , and the double integral of  over  , being the limit of the sum, will represent the 
total mass:

Double Integral as Probability:

                  
 

 

  

Let       be the probability density of a continuous 2-D random variable      . The 

probability that        , a given subset   , is

Average Value of a Function:
The double integral is also used to define the average value of a function       over a set   

  .

    
 

   
          

 

 

  

Recall for a function of one variable,     , the average value of  over an interval      , denoted 
   , is defined by

    
 

    
            

 

 

  

Similarly, for a function of two variables       , we can define the average value of  over a 

closed and bounded subset  of   by

Exercise 1
A city occupies a region  of the   -plane. The population density in the city (measured as 

people/unit area) depends on position      , and is given by a function       . Interpret the 

double integral        
 

 
  

Properties of the Double Integral
Theorem 1
(Linearity)

      
 

 

     
 

 

     
 

 

  

   
 

 

      
 

 

  

If     is a closed and bounded set and  and  are two integrable functions on  , then for 
any constant  :

Theorem 2
(Basic Inequality)

  
 

 

     
 

 

  

If     is a closed and bounded set and  and  are two integrable functions on  such that 
             for all        , then

Theorem 3
(Absolute Value Inequality)

If     is a closed and bounded set and  is an integrable function on  , then
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If     is a closed and bounded set and  is an integrable function on  , then

Theorem 4
(Decomposition)

  
 

 

     
 

  

     
 

  

                   

Assume     is a closed and bounded set and  is an integrable function on  . If  is 
decomposed into two closed and bounded subsets   and   by a piecewise smooth curve  , 
then

The Basic Inequality can be used to obtain an estimate for a double integral that cannot be 
evaluated exactly.

1.

The decomposition property is essential for dealing with complicated regions of 
integration and with discontinuous integrands.

2.

Remarks
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Theorem 1

                            

Let     be defined by

       
 

 

           
     

     

  
  

  

  

Where      and      are continuous for        . If       is continuous on  , then

Remark
Although the parentheses around the inner integral are usually omitted, we must evaluate it 
first. Moreover, as in our interpretation of volume above, when evaluating the inner integral, we 
are integrating with respect to  while holding  constant. That is, we are using partial 
integration.

                          

Suppose now that the set  can be described by inequalities of the form

       

Where      are constants and            are continuous functions of  on the interval

       
 

 

           
     

     

  
  

  

  

Then, by reversing the roles of  and  in Theorem 1, the double integral        
 

 
  can be 

written as in iterated integral in the order " first, then  ":

Exercise 1

      
 

 

  

Describe the set  by inequalities in two ways. Evaluate the double integral

In two ways.

Exercise 2

  
 

 

  

Let  be the triangular region with vertices                      . Evaluate

Exercise 3

     
 

 

  

Let  be the triangular region with vertices                      . Evaluate

Exercise 4
Find the volume of the solid bounded above by the paraboloid          , and below by 
the rectangle                       

14.2 Iterated Integrals
2019年3月28日 21:51
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Theorem 1
(Change of Variable Theorem)

                            

Let each of    and    be a closed bounded set whose boundary is a piecewise-smooth closed 

curve. Let

       
 

   

                        
      

      
       

 

   

     

Be a one-to-one mapping of    onto    , with       , and 
      

      
       expect for possibly on a 

finite collection of piecewise-smooth curves in    . If       is continuous on    , then 

Exercise 1
Omitted

Double Integrals in Polar Coordinates

Remark
Because polar coordinates have a simple geometric interpretation, one can obtain the  and  
limits of integration directly from the diagram in the   -plane, without drawing the region    

in the same way as we did for finding areas in polar coordinates in Chapter 11. The method is 
illustrated in the diagram.

Exercise 2
Omitted
Exercise 3
Omitted
Exercise 4
Omitted

14.3 The Change of Variable Theorem
2019年3月29日 20:15
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Chapter 15 Triple Integrals
2019年3月29日 20:42
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Definition
Integrable

A function         which is bounded on a closed bounded set     is said to be integrable on 

 if and only if all Riemann sums approach the same value as      

Definition
Triple Integral

         
 

 

      
    

               

 

   

If         is integrable on a closed bounded set  , then we define the triple integral of  over 
 , as 

Interpretation of the Triple Integral

         
 

 

  

When you encounter the triple integral symbol

You should think of "limit of a sum". In itself, the triple integral is a mathematically defined 
object. It has many interpretations, depending on the interpretation that you assign to the 

integrand          The "  " in the triple integral symbol should remind you of the volume of a 

rectangular block in a partition of  .

Triple Integral as Volume:

                             

The simplest interpretation is when you specialize  to be the constant function with value 
unity:

       
 

 

  

Then, the Riemann sum (15.1) simply sums the volumes of all rectangular blocks in  , and the 
triple integral over  serves to define the volume     of the set  :

Triple Integral as Mass:

                  

Think of a planet or star whose density varies with position. Let  denote the subset of   

occupied by the star. Let         denote the density (mass per unit volume) at position 

       . The mass of a small rectangular block located within the star at position           will 

be approximately 

               

 

   

Thus, the Riemann sum corresponding to a partition  of  

           
 

 

  

Will approximate the total mass  of the star, and the triple integral of  over  , being the limit 
of the Riemann sum, will represent the total mass:

Average Value of a Function:

Definition
Average Value

Let     be closed and bounded with volume       , and let         be a bounded and 

15.1 Definition of Triple Integrals
2019年3月29日 20:43
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Let     be closed and bounded with volume       , and let         be a bounded and 
integrable function on  . The average value of  over  is defined by

Remark
If you have the impression that you have read this section someplace else, you're right. Compare 
it with Section 14.1. The only essential change is to replace "area" with "volume".

Properties of the Triplpe Integral
Theorem 1
(Linearity)

      
 

 

     
 

 

     
 

 

  

   
 

 

      
 

 

  

If     is a closed and bounded set,  is a constant, and  and  are two integrable functions 
on  , then

Theorem 2
(Basic Inequality)

  
 

 

     
 

  

     
 

  

  

If     is a closed and bounded set and  is an integrable function on  . If  is decomposed 
into two closed and bounded subsets   and   by a piecewise smooth curve  , then
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Theorem 1

                                  

Let  be the subset of   defined by

         
 

 

             
       

       

  
 

   

  

Where   and   are continuous functions on    , and    is a closed bounded subset in   , 

whose boundary is a piecewise smooth closed curve. If         is continuous on  , then

Remark

          
       

       

  
 

   

  

As with double iterated integrals, we are doing partial integration. That is, to evaluate the inner 
integral of 

We hold  and  constant and integrate with respect to  .

Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5
Omitted

15.2 Iterated Integrals
2019年3月30日 1:03
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Theorem 1
(Change of Variable Theorem)

                                  
Let 

        

        
                    

Be a one-to-one mapping of     onto     , with      having continuous partials, and

         
 

    

                                  
        

        
         

 

    

  

If         is continuous on     , then 

Exercise 1
Exercise 2
Omitted

Triple Integrals in Cylindrical Coordinates
Exercise 3
Exercise 4
Omitted

Triple Integrals in Spherical Coordinates
Exercise 5
Exercise 6
Exercise 7
Omitted

15.3 The Change of Variable Theorem
2019年3月30日 1:12
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